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We suggest an exact approach to help remedy the fermion sign problem in diffusion quantum Monte Carlo
simulations. The approach is based on an explicit suppression of symmetric modes in the Schrödinger equation
by means of a modified stochastic diffusion process �antisymmetric diffusion process�. We introduce this
algorithm and illustrate it on potential models in one dimension �1D� and show that there it solves the fermion
sign problem exactly and converges to the lowest antisymmetric state of the system. Then, we discuss exten-
sions of this approach to many-dimensional systems on examples of quantum oscillator in 2D–20D and a toy
model of three and four fermions on harmonic strings in 2D and 3D. We show that in all these cases our
method shows a performance comparable to that of a fixed-node approximation with an exact node.
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I. INTRODUCTION

The Schrödinger equation is an accepted way of descrip-
tion of nonrelativistic microscopic systems:

i�
�

�t
��R,t� = �H − EB���R,t�; �1�

here, t is a real-time variable, R= �r1 ,r2 , . . . ,rN� is a
3N-dimensional vector of positions of N particles, H
=−��2 /2m��2+V�R� is the system’s Hamiltonian, and EB is
an energy offset. The Schrödinger equation yields the de-
scription of the quantum system in terms of a set of eigenen-
ergies and wave functions. Naturally, exact solutions of Eq.
�1� may be obtained only in a few special cases; in general,
one needs to use an approximate scheme to find solutions. In
recent years increasing attention has been drawn to the
random-walk approach for solving the Schrödinger equation,
the so-called quantum Monte Carlo �QMC� method, the at-
tractiveness of which lies in the fact that it treats the many-
body problem exactly. The QMC method is a projection
method based on the combination of the imaginary-time
Schrödinger equation, generalized stochastic diffusion pro-
cess, and Monte Carlo integration. The solutions it yields
have only statistical error which can be properly estimated
and, in principle, made as small as desired �1,2�.

The imaginary-time Schrödinger equation is Eq. �1� in
which the time variable t is replaced with its imaginary ana-
log �= it:

− �����R,�� = �H − EB���R,�� . �2�

It is known that for any initial condition ��R ,0� the solution
of Eq. �2� can be written in terms of the eigenfunctions �n
and the eigenvalues En of the stationary Schrödinger equa-
tion as follows:

��R,�� = �
n

ane−�En−EB���n�R� , �3�

En�n�R� = H�n�R� . �4�

Here an are fixed by ��R ,��=��R ,0� at �=0. When
�→�, only the smallest En term in expansion �3� will sur-
vive, thus projecting an arbitrary initial condition onto the
ground state of the Schrödinger equation �0�R�. This feature
is widely used to numerically obtain the ground state by
solving Eq. �2� with �→�. Still, solving numerically Eq. �2�
in a large number of dimensions is a challenging task:
quantum-chemistry or condensed-matter applications may
require solving Eq. �2� with hundreds of coordinates.

As is known, help is found in the theory of stochastic
processes. Consider, e.g., Eq. �2� with V�R�=0. Then it re-
duces to the diffusion equation in 3N dimensions,

− ����R,�� = −
1

2�
i=1

N

�i
2��R,�� . �5�

Here we used Planck units �=c=1 and unit mass m=1. This
is the master equation for a stochastic diffusion process �3�
that describes the evolution of the population density
��R ,�� for an ensemble of particles subject to Brownian
motion—i.e., the probability for each particle to move from
position x to position x� in time � is proportional to
e−�x − x��2/2�. Since the population density for such an en-
semble satisfies

��R,� + ��� =� dR�

�2����−3N/2 exp	−
�R� − R�2

2��

��R�,�� ,

�6�

which is the solution of Eq. �5� in terms of the Green’s func-
tion

Gd�R� → R;�� = �2���−3N/2 exp	−
�R� − R�2

2�

 , �7�

the solution of the imaginary-time Schrödinger equation �5�
can be represented by a diffusive ensemble of particles
�walkers�. If this ensemble is let to evolve for a sufficiently
long time, eventually it will sample the ground-state wave
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function �0�R�. This sample can be used to estimate, for
example, an integral of the ground-state wave function with
an arbitrary weight O�R� via Monte Carlo integration
�dRO�R��0�R�=�O�Ri� /�1.

In the case of a Hamiltonian with V�R��0, Eq. �2� still
may be interpreted as the master equation for a generalized
diffusion process governed by the Green’s function of the full
equation �2�. Naturally, except for a few special cases, the
exact Green’s function can not be known and one has to use
an approximation. In the diffusion Monte Carlo �DMC�
method commonly used is the small-� approximation �4�,
i.e., for �→0,

G�R� → R;�� � e−��V�R�−EB�/2Gd�R� → R;��e−��V�R��−EB�/2

�8�

accurate up to O��3�. Then, the evolution of the ensemble
can be broken into a sequence of short time steps, each de-
scribed by Eq. �8�. The factor

P = exp�− ��V�R�� + V�R� − 2EB�/2� �9�

acts as a position-time-dependent renormalization of the dif-
fusion Green’s function. This normalization is usually ac-
counted for by a branching birth-death algorithm: if P�1,
the walker is destroyed with probability 1− P; if P	1, an
additional walker is created at the same position with prob-
ability P−1. Both cases can be conveniently coded with the
number of walkers allowed to continue evolving at position
R given by INT (P+rand�0,1�).

Since in the DMC method the wave function has to be a
population density, the DMC method can only describe the
constant-sign solutions of the Schrödinger equation. This
presents a serious problem if one is interested in the ground
state of a fermion system where the wave function is anti-
symmetric �i.e., both positive and negative�, the situation
known as the “fermion sign problem.” At present, the most
successful approach here is the so-called fixed-node approxi-
mation. Here one assumes a priori knowledge of the nodal
hypersurface �0�R�=0 �5,6�. In the volume embraced by the
nodal surface the wave function has a constant sign and can
be found to high accuracy using the usual DMC method. The
fixed-node approximation is known to give the above �varia-
tional� estimate for the fermion ground-state energy. Very
remarkable results have been achieved in this way for sys-
tems with as many as few hundreds of electrons �1�. Yet the
proper choice of the nodal surface presents a very nontrivial
challenge and exact approaches to the fermion sign problem
are still of great interest.

One of the steps in this direction is to represent the fer-
mion wave function as a difference of two positive contribu-
tions, e.g.,

��R� = �+�R� − �−�R� ,

and use two sets of “positive-sign” and “negative-sign”
walkers to sample �+ and �− separately. If one starts with
an appropriately chosen initial “antisymmetric” sample,
theoretically, �+ and �− will converge to the fermion ground
state �=�+−�− �7�. In such an approach, known as the
transient estimator method, it can be seen rather immediately

that both subsets of walkers independently converge to a
symmetric solution. Information about the antisymmetric
contribution is only encoded as an e−�E1−E0�� variation on top
of a large symmetric component �see Eq. �3��. Even if the
coefficient a0 in Eq. �3� was originally exactly zero, if left
without control, noise results in a0�0 and washes out the
fermionic signal, the situation known as the “exponential
signal-to-noise ratio problem.” One further possibility would
be to suppress the symmetric component of noise explicitly
at each DMC step using certain cancellation criteria between
the positive and negative walkers �8–10�. For that one needs
to realize that, strictly speaking, contributions coming to a
point at each moment of time from �+ and �− shall cancel
each other. Then one attempts to implement this cancellation
by making walkers of positive and negative signs to annihi-
late whenever they end up at the same position R. Since it is
practically impossible for two pointlike walkers to end up at
the same position, implementation of this process makes use
of “smearing” for which a certain smearing scale shall be
introduced. Normally, the annihilation of positive and nega-
tive walkers is performed via cancellation between the
Green’s functions for some “�
” pair of walkers, e.g.,

G�R;R+,R−� = G�R,R+� − G�R,R−� , �10�

and, thus, the scale is 
�. Here R+ and R− are positions of
some positive- and negative-sign walkers in the sample. Al-
though impressive results have been achieved with this ap-
proach for smaller molecules �11�, it was realized soon that
for the cancellation to work efficiently the average distance
between the walkers should be comparable to the annihila-
tion scale. For example, if the diffusion scale 
� becomes
much smaller than the average distance between the walkers,
the overlap in Eq. �10� will almost surely vanish and the two
sets of positive and negative walkers will evolve indepen-
dently. The necessity to maintain a rather large density of
walkers makes the computational cost grow exponentially
with the number of dimensions and renders solution of the
problems with more than about 30 dimensions practically
unfeasible �8,12�.

In this paper we propose a different exact approach to the
fermion sign problem which we call the antisymmetric dif-
fusion Monte Carlo �ADMC� method. It is based on modifi-
cation of the stochastic diffusion process as is described by

HD = −
1

2
�2 → Ha = −

1

2
�2 + AP+, �11�

where P+ is a projector on the linear space of all symmetric
quantum states and A is a large positive constant. As we
show in this paper, such a modification leads to a suppression
of symmetric modes in the DMC dynamics so that the lowest
antisymmetric state becomes the true ground state of the sto-
chastic process.

In the next section, Sec. II, we introduce the stochastic
antisymmetric diffusion process and show how it can be
adopted for use with the DMC method. In Sec. III we test
this method numerically on a few potential models in one
dimension �1D�, harmonic oscillators in 1D–20D, and the
problem of three and four fermions bound by harmonic
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strings to a fixed center in 2D and 3D �which can be seen as
a crude model for three- and four-electron atoms�. All of
these models have known analytic solutions. As we shall see,
our method gives results comparable to that of a fixed-node
approximation with an exact node in all of these examples.
In Sec. III we also discuss in detail ADMC implementation
in many dimensions. Conclusions follow in Sec. IV. In the
Appendix we present the source code �MATLAB� for the
ADMC method.

II. STOCHASTIC ANTISYMMETRIC DIFFUSION
PROCESS

The antisymmetric diffusion Monte Carlo method stems
from the notion that the ground state of the Schrödinger
equation need not be necessarily symmetric, contrary to
widespread opinion. Consider, e.g., the following modifica-
tion of the Hamiltonian:

H = −
1

2
�2 + V�x� → → Ha = −

1

2
�2 + V�x� + A�1 + �̂� ,

�12�

where �̂��x�=��−x� and A is a large positive constant. If
��̂ ,V�x��=0, it is known that the eigenfunctions of H are
also the eigenfunctions of �̂ with eigenvalues ±1; thus, they
are also the eigenfunctions of Ha and vice versa. Then, it is
easy to see that the result of transformation �12� is to shift the
eigenvalues of parity-even ��+� and parity-odd ��−� solu-
tions as follows:

�+:E+�+ = H�+ → �E+ + 2A��+ = Ha�+,

�−:E−�− = H�− → E−�− = Ha�−,

thus making negative-parity eigenstates have lower energy
than their positive-parity counterparts.

Note that potential in Ha is nonlocal. While it is difficult
to represent a nonlocal potential in the DMC method via the
branching process, the term A�1+ �̂� can be exactly accom-
modated at the level of the diffusion Green’s function itself
by substituting it with the solution of Eq. �13�. E.g., in 1D a
solution of Eq. �13� can be immediately found:

−
�

��
Ga�x,x�;�� = −

1

2
�x

2Ga�x,x�;�� + A�1 + �̂x�Ga�x,x�;�� ,

Ga�x,x�;0� = ��x − x�� . �13�

In momentum space we have

−
�Ga�k,y ;��

��
=

k2Ga�k,y ;��
2

+ A�Ga�k,y ;�� + Ga�− k,y ;��� .

�14�

Since parity is conserved in Eq. �14�, defining

Ga�k,y ;�� = Ga
+�k,y ;�� + Ga

−�k,y ;�� ,

Ga
+�k,y ;0� = cos ky, Ga

−�k,y ;0� = − i sin ky ,

we find

Ga�k,y ;�� = e−�k2/2+A�� cos kx − ie−k2�/2 sin kx . �15�

After an inverse Fourier transform we obtain

Ga�x,y ;�� =
1

2
2��
�e−�x − y�2/2��1 + e−2A��

− e−�x + y�2/2��1 − e−2A��� . �16�

In general, if the projector onto irrelevant states in Eq. �12�
�Pa= �1+ �̂� /2� is such that �Pa ,�2�=0, then the modified
diffusion propagator is

Ga�R,R�;�� = �1 − Pa + e−2A�Pa�Gd�R,R�;�� . �17�

Note that e−2A� is important to render Ga�R ,R� ;��→��R
−R�� as �→0. However, for any practical purposes this term
may be dropped. For the DMC method it is sufficient to use
the modified diffusion Green’s function

Ga�x,y ;�� =
1


2��

e−�x − y�2/2� − e−�x + y�2/2�

2
. �18�

It is straightforward to check that Eq. �18� is a proper propa-
gation function—i.e.,

� dyGa�x,y ;�1�Ga�y,z;�2� = Ga�x,z;�1 + �2� ,

except for �1 or �2=0. For a many-body system Eq. �18�
generalizes,

Ga�R� → R;�� = AssymRGd�R,R�;�� � �
�


�Gd��R,R�;�� ,

�19�

where the sum is over particle permutations � and 
�=1 for
even and −1 for odd permutations and antisymmetrization
operator assym is defined by the second identity in Eq. �19�.
Then, the fermionic ground state of the Schrödinger equation
can be found using the DMC method with diffusion process
substituted with antisymmetric diffusion which suppresses
symmetric solutions and reduces the exponential signal-to-
noise ratio problem.

Note that the idea of suppressing the irrelevant compo-
nents of the wave function by introducing into the diffusion
Hamiltonian a “large” projector onto such states may also be
applied to finding excited states by considering, e.g., H

→H+AP�, where P̂�= ������ is simply a projector onto the
ground state ���.

III. NUMERICAL RESULTS

In this section we numerically test our idea on a few po-
tential models in 1D, harmonic oscillator in 1D–20D, and the
problem of three and four fermions on harmonic strings in
2D–3D. For the ADMC method we use an implementation in
MATLAB designed “on top” of a straightforward realization of
the DMC method and described in detail in the Appendix. In
the numerical procedure �Ga�x ,y ;��� defines the probability
for a walker to move from position x to position y in time �
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and sgn�Ga�x ,y ;��� is used to keep track of the walkers’
signs. The local potential V�x� is accounted for via the regu-
lar branching process �9�. One should also remember that
walkers may be destroyed during antisymmetric diffusion it-
self ��dy�Ga�x ,y ;����1� which is an important addition to
the extinction from the branching process in 1D.

In 1D, since for any values of y the Ga�x ,y ;�� has the
node at the same position x=0, sgn�Ga�x ,y ;��� divides the
configuration space into “positive” and “negative” halves. If
the initial sample was completely localized in one-half and
each walker in this half had, e.g., a positive sign, then when-
ever such a walker is moved so that it does not cross the
node its sign will remain positive. Shall such a walker move
into the other half of the space, it will cross the node and
its sign will change. If this walker happens to move back
into the original half, its sign will change again to the origi-
nal positive. Thus, the change of signs induced by
sgn�Ga�x ,y ;��� always occurs coherently in 1D. This simpli-
fies greatly the fermion sign problem because no cancellation
is necessary, but this is the exception limited to D=1.

We now consider numerically the ADMC method in a
finite quantum well, harmonic oscillator, and linear potential
in 1D, each of which has a known analytical solution. In
each case we found that the ADMC method converges to the
fermion ground state. For a finite well with depth V
=10 units the energy levels are E+=2.3 and E−=8.0 units.
Using an implementation in MATLAB we obtain E+

=2.3±0.1 and E−=8.1±0.1. For the harmonic oscillator
V�x�=x2 /2 the energy levels are E+=0.5 and E−=1.5; we
obtain E+=0.5±0.1 and E−=1.5±0.1. And for the linear po-
tential V�x�= �x� the energy levels are E+=0.8 and E−=1.9
while we find E+=0.81±0.1 and E−=1.85±0.1. In all cases
we find that the population of walkers properly samples fer-
mionic ���x�� �see Fig. 1�. Thus, in 1D the fermion sign
problem is solved exactly.

Note that in our calculations we aimed at verifying that
the ADMC approximation converges to a fermionic ground
state and not to reproduce with high accuracy the numbers
known analytically for these models. Thus we quote rather
large uncertainties. This is because the computation typically
stopped soon after it was clear that it converges to the correct
energy. Precision of the MC method, as is known, may be
increased by taking larger samples or longer runs.

It is important to emphasize that 1D examples, instructive
and illustrative as they are, do not guarantee applicability of
a method to many-dimensional problems. This is because of
a very special case of 1D for fermion systems—namely, that
the node in 1D is a point and not an extended object. In fact,
previously known ab initio fermion sign prescriptions, in-
cluding the above-mentioned cancellation schemes, work
well in 1D while are impractical in higher dimensions be-
cause of escalating computational cost. For this reason we
now turn our attention to applications of the ADMC method
in higher dimensions.

In higher dimensions the special situation of 1D does not
hold and a cancellation between “positive” and “negative”
walkers is necessary. Generally, we found that the usual can-
cellation schemes, such as those reviewed in Sec. I, still fail
with the ADMC method due to the low density of walkers.

However, we found that a different type of cancellation simi-
lar in spirit to the fixed-node approximation is successful
with the ADMC method and is able to achieve performance
comparable to that of the fixed-node approximation with an
exact node. In such cancellation schemes no nodal surface is
assumed a priori, but it is established dynamically by the
algorithm itself so as to balance the fluxes of positive and
negative walkers. It has been known that with the regular
DMC method such approaches are unstable because fluctua-
tions in the population sizes of the ensembles of positive-
and negative-sign walkers lead to an exponentially growing
imbalance. This results in that one sample completely takes
over while the other is extinguished and the entire system
relaxes to the bosonic ground state. With the ADMC method
this does not happen because the symmetry and balance be-
tween positive- and negative-sign ensembles are strictly en-
forced by antisymmetric diffusion or, in other words, because
the stable ground state of the antisymmetric diffusion process
is fermionic.

Although we considered a variety of possible prescrip-
tions for such a cancellation, here we mention only two and

FIG. 1. �Color online� The distribution of walkers for a quantum
harmonic oscillator �a� and linear potential �b� for an antisymmetric
solution in 1D obtained with the antisymmetric diffusion process.
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in detail describe only one of them that we believe to have
performed the best. In the first implementation the configu-
ration space is partitioned into cells identified with a set of
randomly chosen center points. A point of the configuration
space is said to belong to the cell identified with the center in
the set that is the closest to this point. This arrangement is
also known as the Voronoi diagram. The wave function
within each cell is assumed to have a constant sign. This
divides the configuration space into pockets of positive and
negative wave function signs so that the walkers of a given
sign are not allowed to penetrate into the wave function
pockets having the opposite sign. The signs of all cells are
updated to track the average sign of all walkers entered each
cell in the past. This allows the actual partition of the con-
figuration space to be established dynamically.

In the second implementation, the sign of the wave func-
tion at the location of a particular walker is estimated based
on the average sign of a number of nearest-neighbor walkers.
E.g., if a particular walker R has n positive neighbors and
K−n negative neighbors, the sign of the wave function at R
is assumed to be positive if n	K−n and negative otherwise.
Correspondingly, the walker is eliminated if it is found to
reside in the wave function region with the wrong sign. The
node of the wave function in this case is represented by the
interface between the ensembles of walkers with positive and
negative signs. No a priori information about the node posi-
tion is needed, including any predefined parametrization of
the nodal surface or of the configuration-space partition. The
actual position of the node is established dynamically in a
stochastic manner constrained to a degree by the initial
sample distribution. E.g., our initial condition was typically
given by a sample of walkers randomly distributed in the
unit D -cube �0,1�D. Thus, the node typically was established
as a plane nearly perpendicular to the vector �1,1,¼,1�. Still,
there was a substantial degree of noise in the position of the
node due to stochastic nature of the process by which it was
established.

In our simulations with quantum oscillators in 1D-20D we
typically used M =500–1000 walkers with ���10−3 and
simulation duration of �104 Monte Carlo steps. With this
choice of parameters the distance-based cancellation failed
already in 5D with E−=2.7±0.05 �as is well known, for
quantum oscillators, E+=D /2=2.5 in D=5 and E−=D /2+1
=3.5�. On the other hand, fixed-node-like algorithms showed
good performance in all our runs. In 2D the ADMC method
with nearest-neighbor cancellation gave E−=1.98±0.05 vs
Efn

− =1.95±0.03 of a fixed-node approximation �note that in
this case the average distance between neighbor walkers in
the sample is just l�0.05 compared to 
���0.03�. In 5D
we obtained E−=3.53±0.06 vs Efn

− =3.44±0.06 �l�0.3�; in
10D, E−=6.03±0.1 vs Efn

− =5.95±0.1 �l�0.6�; and in 15D,
E−=8.4±0.2 vs Efn

− =8.5±0.2 �l�0.8�. The ADMC method
with Voronoi partition of the configuration space in 5D gave
E−=3.63±0.1 and in 20D E−=11.65±0.3 vs Efn

− =11.2±0.2
of the fixed-node approximation. Because of the rough rep-
resentation of the nodal surface in this implementation, the
energy estimate was typically worse here than that obtained
with nearest-neighbor cancellation. For number of dimen-
sions D	20 we encountered growing bias in our simple

DMC realization which is known in the literature as popula-
tion control bias �13�. Our computational resources did not
allow us to make an attempt at elimination of this bias. Thus
we had been limited to simulations with less than 20 dimen-
sions. However, importance sampling, reweighing schemes,
and runs with a larger number of walkers are known to im-
prove the situation here �14�.

In our numerical experiments the nearest-neighbor cancel-
lation generally appeared as the best performer. This is an ab
initio method that needs no a priori information about the
nodal surface. Among other advantages is that this method
can be easily generalized for use with importance sampling
�as long as the guiding function is symmetric and nonzero�
and that this scheme can be easily adopted for use with the
conventional fixed-node DMC algorithm. In many dimen-
sions we found that the effect of walkers’ elimination in an-
tisymmetric diffusion itself is deemphasized and can be suc-
cessfully replaced by the cancellation routine. Thus,
modifications to a regular fixed-node DMC method leading
to the use of antisymmetric diffusion reduce to a redistribu-
tion of walkers between symmetry-related wave function
pockets �following a regular diffusion move� and the calcu-
lation of the node position using a nearest-neighbor prescrip-
tion. The DMC-move Green’s function and elimination and
move-rejection routines may be carried over without change
from the regular fixed-node DMC algorithm.

Among the disadvantages of nearest-neighbor cancella-
tion is higher fluctuations in M leading to larger statistical
error and larger population control bias in E. Also, a simple
mixed estimator can no longer be used to estimate the con-
figuration’s energy because it now misses the contribution
from the flux of walkers across the node. The nearest-
neighbor cancellation computational cost scales with the size
of the ensemble as M2. This introduces substantial hardship
if one attempts to counter population control bias or simply
improve DMC precision by increasing the size of the sample.
Furthermore, as any other cancellation scheme, this method
has a “Np! problem” consisting in factorially growing a num-
ber of symmetry-related pockets �which all need to be prop-
erly sampled� when the number of particles in the simulation
grows.

Specific to nearest-neighbor cancellation is the problem of
finite node width. To get a better understanding of this, con-
sider an arbitrary walker from the sample. Let sV be a sphere
of volume VK such that there are K other walkers inside. All
walkers inside sV we will call nearest neighbors. Let si be a
random variable representing the sign of a randomly picked
nearest neighbor. Then the sign of the wave function at the
position of the walker is represented by

SK = �
i=1

i=K

si. �20�

According to Eq. �20�, the partition of the configuration
space into the pockets of positive and negative wave function
signs is itself random. Even if a positive walker is drawn
from the positive wave function sign pocket, it may be found
to reside in the wrong region and may be eliminated with
probability P�SK�0�. Thus, the nodal surface in nearest-
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neighbor cancellation �i.e., the region where walkers are rap-
idly eliminated� is wide. The finite width of the node leads to
a positive bias in the energy estimate in the ADMC method.

To estimate the width of the node consider the following.
If ��+�R�� and ��−�R�� are sV-averaged normalized �i.e.,
��+�+ ��−�=1� densities of positive and negative walkers in
the neighborhood of point R, respectively, and K is large,
then the probability to conclude that the wave function at
point R has negative sign is given by

P�SK � 0� = erf	
K

2

��−�R�� − ��+�R��

��−�R����+�R��


 �21�

�because in this case SK may be treated as normally distrib-
uted random variable with certain mean and dispersion�.
Thus, if ��−�x�� changes from 0 distance d away from the
node to 1 distance d on the other side of the node, we get

P�SK � 0� � erf	−
x


�d2 − x2�/K

 , �22�

where x is the distance from point R to the node. d scales as
the average distance between walkers in the sample d� l
�L /M1/D, where L is the extent of the wave function and M
is the size of the sample. Thus, the width of the node in
nearest-neighbor cancellation is approximately given by

dnode �
L/M1/D


1 + K
. �23�

When D is large, the width of the node is large. The good
news is that it can be efficiently reduced as 1/
K. In fact, we
are able to clearly see this effect in our numerical simulations
�see Fig. 2�. On the other hand, since to thin the node we
effectively integrate the wave function over some volume sV
�i.e., SK��sV

dR��R��, our node is additionally smoothened
in the process so that its features smaller than the smoothen-
ing volume sV are lost. This is of limited concern because of
very sparse volume sampling in the DMC method that al-
ready to a large degree suppresses the effect of such features.
Also, note that the linear size of the node features that are
smoothened away in nearest-neighbor cancellation practi-
cally does not depend on K for large D �i.e., �K1/D�.

Finally, in D�20–40 we found that nearest-neighbor
cancellation failed to provide an accurate result with the en-
ergy appearing to relax to the bosonic ground state. At this
point we also started to see exceedingly large population
control bias in the DMC subroutine; thus, a connection be-
tween the two may be possible. Implementation with the
configuration-space partition via the Voronoi diagram
showed no signs of such a breakdown; i.e., the energy esti-
mate always stayed significantly above E+. At this time we
cannot claim complete understanding of the reasons behind
this failure. Our numerical experimentation yielded the fol-
lowing. This failure could not be reproduced in 2D with as
few as seven walkers; thus, it is not due to a low walker
density. The ensembles of positive- and negative-sign walk-
ers appeared to be clearly separated in the configuration
space and did not mix. When antisymmetric diffusion resa-
mpling was restricted from full D-dimensional reflection to a

change in only one or two coordinates, the effect completely
disappeared �i.e., the result of a fixed-node approximation
was recovered in all dimensions�. Finally, the interface be-
tween the ensembles of positive and negative walkers ap-
peared to rotate. It may be possible that a breakdown of the
ADMC method with nearest-neighbor cancellation is be-
cause the process enters some dynamical regime different
from the one considered above and because some high-
dimensional mode develops that is able to lower the energy
of the sample while keeping it antisymmetric.

However, we believe that the observed effect is mainly
due to a clustering of the sample into dense statistically de-
pendent groups of walkers, known to be an issue in higher-
dimensional DMC simulations. This proposition is consistent
with all of the above made observations: the absence of the
effect in lower dimensions or when symmetry reflection is
reduced to one or two dimensions because such dense clus-
ters effectively annihilate with themselves when they are re-
flected to a relatively nearby position, interface rotation be-
cause of penetration of such clusters �and their mirror images
in the opposite direction� through the nearest-neighbor node.
If this proposition is correct, the use of importance sampling
will greatly reduce this condition. Also, it may be possible
that in simulations with few relatively low-dimensional fer-
mions �2D–3D� this issue may be absent to begin with given
our above-mentioned experiments with restricted symmetry
reflection.

FIG. 2. Finite node width bias in the ADMC method with
nearest-neighbor cancellation for a quantum oscillator in 5D �a� and
three fermions in 3D �b�. Dotted lines are E=a+b /
K fits. The best
fits are E=3.498+0.245/
K for the harmonic oscillator and E
=7.18+1.18/
K for three fermions.
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Finally, we discuss the applications of the ADMC method
to a toy model of three fermions on harmonic strings bound
to a common center. These represent a case closer to realistic
in terms of the complexity of the nodal surface. Recall that in
harmonic oscillators even in 20D the node is a simple plane.
As was mentioned, a difficulty with the larger number of
particles is factorially growing the number of symmetry-
related pockets that all need to be considered for proper can-
cellation. E.g., in the case of three particles there are 3!=6
wave function pockets which need to be properly sampled.
Thus, our simulations performed with 300 walkers are
equivalent to a fixed-node simulation with only 300/3!=50
walkers per wave function pocket. With such a low number
of walkers the proper representation of the nodal surface be-
comes an issue. In particular, the application of the ADMC
method with M =300 walkers and K�10 nearest neighbors
to three fermions in 3D yields E−=7.53±0.03 vs E−

=6.56±0.03 for a fixed-node approximation with M =50.
Compare this with the fermion ground-state energy E−=6.5
�the ground state for three fermions in 2D and 3D may be
obtained as a Slater determinant of quantum oscillator wave
functions with quantum numbers 00, 10, and 01, and, thus,
has energy E−=NpD /2+2�. The ADMC method with M
=900 and K=17 yields E−=7.06±0.02. The reason for such
a large bias is twofold. On the one side, there is a finite-
node-width bias decaying as 1/
K �see Fig. 2�. On the other
side, there is bias due to the nodal surface being represented
only by some M =50 points in nine-dimensional space. A
further increase in M, which would decrease these biases,
leads to M2 rising computational cost.

A simple improvement may be made, however, that alle-
viates these problems by recognizing that the central ingre-
dient here is to better represent the node and not “intrinsi-
cally” to have a larger sample size. If we had a better
representation of the node, even M =300 walkers would suf-
fice to get a good answer. A better representation of the node
may be achieved by using walkers from the previous genera-
tions to deduce the position of the node. With such a modi-
fication one can simulate M =300 walkers and the node rep-
resented by almost 10�300/3! points �which we call the
codebook� at the same computational cost as simulating M
=900 walkers. This also allows us to use a larger number of
nearest neighbors K and, thus, further improve the accuracy
of the node representation. The Appendix presents the imple-
mentation of the algorithm that uses a nearest-neighbor
search in the codebook. After such a modification we find for
three fermions in 3D with M =300 a codebook with nine
pages �i.e., nine previous generations sampled� and K�60,
E−=6.63±0.01. We find, with K�15, E−=6.74±0.04 and,
with K�5, E−=6.93±0.02. These exhibit perfect 1 /
K scal-
ing with the best fit E−�K�=6.5+0.18/
K. For three fermions
in 2D with M =300 and K�60 we obtain E−=5.02±0.01 vs
E−=5.0±0.03 fixed-node results with M =50. Accordingly,
the result for the simple nearest-neighbor algorithm without
codebook was E−=5.8±0.02 with M =300 and E−

=5.27±0.01 with M =900.
With four fermions the situation is further worsened be-

cause now there are 4!=24 symmetry related pockets instead
of 3!=6. With M =300 we have just a little more than ten
walkers to sample each pocket. Still, using the same param-

eters as above we find E−=10.4±0.05. This is to be com-
pared with the exact answer E−=9.0. Respectively, the fixed-
node approximation with M =15 gives E−=10.32±0.04, but
with M =300 it gives E−=8.81±0.03. We may try to increase
the size of the codebook by the factor 4! /3!=4 to account for
the increased number of symmetry duplicates to be consid-
ered. Doing so we find with M =300, E−=9.6±0.1. This,
indeed, lowered the energy estimate but not sufficiently to
recover the exact answer.

It is impossible to extend our calculations to five fermions
using brute force because of the escalating Np! problem.
However, we believe this situation may be eventually re-
solved by accounting for Np! permutations implicitly and,
keeping only the walkers from the single wave function
pocket, account for Np! implicit mirror copies using the pro-
cedure with algebraically growing cost. For example, a
search on the matrix of all interparticle distances for two
configurations �r1 , . . . ,rNp

� and �r1� , . . . ,rNp
� � may allow one

to efficiently locate the nearest neighbors out of Np! copies.

IV. CONCLUSIONS

In this work we present an approach to the fermion sign
problem which is based on the suppression of the symmetric
modes at the level of the Hamiltonian. This makes an anti-
symmetric solution the true ground state and suppresses the
exponential signal-to-noise ratio problem. This is achieved
by introducing a nonlocal projection operator A�1+ �̂� in the
Hamiltonian which shifts the energy of all “bosonic” states
by a large positive constant 2A. Such an alteration, formally,
destroys the locality of the Hamiltonian; however, it can be
fully incorporated in the redefinition of the stochastic diffu-
sion process. After such a redefinition, the approach can be
applied within the framework of the regular DMC method.
We tested and illustrated this approach on an example of a
few potential models in 1D, quantum oscillator in 1D–20D,
and a toy model of three and four fermions on harmonic
strings in 2D and 3D. We found that the method performs
well in 1D as well as in many-dimensional oscillators and for
three and four fermions. With cancellation algorithms similar
to the fixed-node approximation but using the dynamic nodal
surface the exact fermion DMC method showed a perfor-
mance comparable to that of the fixed-node approximation
with an exact node. Thus, our simulations show that with
improvements provided by antisymmetric diffusion and a
simple prescription for dynamical determination of the con-
stant wave function sign regions, the exact fermion DMC
method may be efficiently applied even in higher dimen-
sions.

One of the advantages of our method is its portability to
already existing algorithms. Essentially, two modifications
are necessary to use antisymmetric diffusion in an existing
fixed-node algorithm. First, after regular diffusion moves are
performed, the walkers should be additionally redistributed
between the symmetry-related configuration-space regions
followed by corresponding sign flips �i.e., if the permutation
leading to the region was negative, the sign of the walker
should be flipped�. Then, the position of the nodal surface
should be evaluated given current and previous sample con-
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figurations. The thus determined nodal surface can be used in
a fixed-node elimination and move-rejection prescription in
place of the usual node-crossing condition. Our algorithm
also allows straightforward generalization for use with im-
portance sampling as long as the guiding function is symmet-
ric and everywhere nonzero.

In this paper a nearest-neighbor search was introduced in
order to facilitate the determination of the nodal surface from
the sample configuration. It is simple and has good perfor-
mance but also showed a breakdown in higher dimensions.
Further advances are possible within this framework. The
representation of the nodal surface may be improved by ac-
cumulating sample configurations from previous generations.
In principle, if configurations from all previous times are
considered in such a manner, the ADMC method should
show performance identical to that of the fixed-node ap-
proximation with exact node, and the above-mentioned
breakdown should be removed since the node will be stabi-
lized in the limit of large simulation times. To facilitate a
nearest-neighbor search in an increasingly large codebook
improved algorithms should be used to yield a sign estimate
without an exhaustive codebook search. Furthermore, the
Np! problem may be alleviated by considering the set of
walkers within a single wave function pocket and accounting
for Np! mirror copies implicitly. In particular, we believe an
efficient algorithm may exist yielding for two vectors R
= �r1 . . .rN� and R�= �r1� . . .rN� � the permutation �= i1 , . . . , iN

minimizing �R−�R��2. Using this thus-defined distance
function ���R ,R��2=min��R−�R��2, the cost of the search
over Np! copies in the sample of walkers may be greatly
reduced.

Finally, it may be advantageous to view the above discus-
sion in a wider context. The partition of the configuration
space into wave function pockets of constant sign does not
have to be restricted to a nearest-neighbor prescription. In-
stead, any many-dimensional classificator trained on the se-
quence of sample configurations may be used to define re-
gions of different wave function signs. A nearest-neighbor
search is only one example of such a classificator. At the
same time a significant body of literature on high-
dimensional classificators already exists in image processing
and pattern recognition where one usually relies on neural
networks. One may hope to incorporate the conditions of the
problem’s symmetry in the structure of such neural network
and, thus, remove the need for tracking of Np! copies of each
walker. In principle, with K units such a network can provide
accuracy for the wave function sign representation �1/
K
�15�. Antisymmetric diffusion will provide the stability nec-
essary for the training of the classificator to be successful.
Significant advances along this direction seem plausible.

APPENDIX: MATLAB SOURCE CODE FOR
IMPLEMENTATION OF THE ADMC METHOD WITH

NEAREST-NEIGHBOR CANCELLATION USING
A CODEBOOK SEARCH

Here we present the source code for our implementation
of the ADMC method with nearest-neighbor cancellation. A
codebook over Ncdb=9 snapshots of previous sample con-

figurations is used to define the nodal hypersurface. Snap-
shots are taken with a large interval of time tcdb=0.75, close
to the energy autocorrelation time, to avoid having statisti-
cally correlated sample configurations in the codebook.

Also, we noticed that in print some symbols in the code
could have changed, such as ” ’ ” which is used for MATLAB
matrix transposition and string definitions.

% ADMC algorithm �MATLAB�
clear all
% -------------------
% PARAMETERS
D=3; % dimensionality
N=3; % number of fermions
M0=300; % target pop size

dt=0.01; % sim time step
ttot=60; % total sim time
tau=1; % pop size reset time

ineighb=3; % min nearest neighbors
fneighb=751; % max nearest neirghbors
pneighb=0.04; % percent nearest neighbors

K0=9; % codebook history depth
tcdb=0.75; % codebook update time

% -------------------
% AUXILIARY
itr=ceil�ttot/dt�;
dK=ceil�tcdb/dt�;
dt2=sqrt�dt�;
egN=20;
E=0;

% all permutations of N fermions
pP=uint8�perms�N:−1:1� ’ �;
% permutations signs of N fermions
sP=perm�sign�pP�;

% -------------------
% INTIALIZING
% statistics array
ss=zeros�4, itr�;
% E-smoothing array
mEG=repmat�E, �1,egN��;
% array of walkers coordinates
walkers=rand�D,N,M0�;
% array of “walker sign	0”
signs=false�M0,1�;
% codebook for walkers & signs
mK=ceil�1.5�M0�;
wlkcdb=cell�K0,1�;
sgncdb=cell�K0,1�;
for k=1:K0
wlkcdb�k�=zeros�D,N,mK�;
sgncdb�k�=zeros�mK,1�;
end
% codebook pages age tracker
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agecdb=repmat�K0+2, �1,K0��;
% -------------------
% CYCLE
for i=1: itr
% current population size
M=size�walkers,3�; M1=M;

% ------------------------------------
% REGULAR DIFFUSION STEP
% compute potential before
v0=squeeze�sum�sum�walkers.ˆ2,1� ,2�� /2;
% perform diffusion step
walkers=walkers+dt2� randn�D,N,M�;
% compute potential after

v1=squeeze�sum�sum�walkers.ˆ2,1� ,2�� /2;
% compute multiplicity factor
mult=floor�exp�−dt� �v0+v1� /2�� . . .

exp�dt�E�+rand�M,1��;

% repopulate walkers w/r to multiplicity
idx=zeros�max�mult� ,M�;
for k=1:M idx�1:mult�k� ,k�=k; end
idx=idx�idx	0�; M=length�idx�;
walkers=walkers�: , : , idx�;
signs=signs�idx�;
if �ineighb	 =M� error�’M is low¡’�; end

% ------------------------------------
% A-DIFFUSION RESAMPLING
% choose symmetry pocket to which
% the walkers will be translated
idx=1+floor�size�pP,2�� rand�M,1��;
P=uint16�pP�: , idx��;
% rearrange N-fermions according to P:
% some tricks for “faster” matlab
Z=uint16�repmat�1:M, �N,1���;
for k=1:D
X=uint16�repmat�k,N,M��;
nidx=sub2ind��D,N,M� ,X�:� ,P�:� ,Z�:��;
walkers�k, : , : �=reshape�walkers�nidx� ,N,M�;
end
% sign flip in resampling� “sign	0”�
% 1�1− 	1, 1�0− 	0, 0�1− 	0, 0�0− 	1
% :: operation “��”
signs= �signs= =sP�idx��;
% ------------------------------------
% CANCELLATION
% update codebook
if �rem�i ,dK�= =0�
% find oldest codepage out there
�junk, idx�=max�agecdb�; idx=idx�1�;
agecdb=agecdb+1;
agecdb�idx�=0;
% fill in target codepage
wlkcdb�idx�=walkers;
sgncdb�idx�=signs;
end
% reshape to N�D coords

wlkdst=reshape�walkers,D�N,M�;
% how many pages in cdbook?
idx=find�agecdb�K0+1�;
cdbdst= � �;
cdbsgn= � �;
for k=idx
mK=size�wlkcdb�k� ,3�;
cdbdst= �cdbdst, . . .

reshape�wlkcdb�k� ,D�N,mK��;
cdbsgn= �cdbsgn;sgncdb�k��;
end
% include current configuration
% of walkers into codebook

if �rem�i ,dK�̃ =0�
cdbdst= �cdbdst,wlkdst�;
cdbsgn= �cdbsgn;signs�;
end
curK=size�cdbdst,2�;
% percentage ## of nearest neighbors
neighb=max�ineighb, . . .

min�fneighb, round�pneighb�curK���;
% computes distance all-to-all

a=repmat�sum�wlkdst.ˆ2,1�’ , �1,curK��;
b=repmat�sum�cdbdst.ˆ2,1� , �M,1��;
dists=a+b−2� �wlkdst��cdbdst�;
% find nearest neighbours
�junk,nnidx�=sort�dists,2�;
% find signs of nearest neighbours
nnsigns=sign�cdbsgn�nnidx�: ,1 :neighb��−0.5�;
% find wave function sign estimates
signsX=sum�nnsigns,2�	0;
idx=find�signsX�:�= =signs�:��;
M=length�idx�;
% clear wrong walkers
walkers=walkers�: , : , idx�;
signs=signs�idx�;

% ------------------------------------
% ADJUST ENERGY OFFSET
% mixed energy estimator

EV=mean�sum�sum�walkers.ˆ2,1� ,2�� /2;
% growth estimator smoothed
if �i= =1� mEG�:�=EV; end
mEG�1:end−1�=mEG�2:end�;
mEG�end�=E−log�M/M1� /dt;
EG=mean�mEG�;
% adjust energy offset
E=EG+log�M0/M� / tau;
% save statistics to array ss
ss�: , i�= �M;E;EV;EG�;
end

% MEANS AND VARIATIONS
% cut-off initial relaxation
itr0=ceil�max�5,K0� tcdb� /dt�;
% mean and STD for E
ssR=mean�ss�: , itr0 :end� ,2�;
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ssD=std�ss�: , itr0 :end� ,0 ,2�;
fprintf�’E : %g+ /−%g;M%g+ /−%g\n’ , . . .

ssR�2� , ssD�2� , ssR�1� , ssD�1��;

% function sP=perm�sign�pP�
% %copy this function
% % to file perm�sign.m
% % ¼obtains permutations signs
% nPerm=size�pP,2�;
% sP=false�nPerm,1�;
%
% for k=1:nPerm
% perm=pP�: ,k�;
% flips=1;

% i=1;

% while�̃ isempty�i��
% i=find�perm�1:end−1�	perm�2:end��;
% if�̃ isempty�i��
% i=i�1�;
% x=perm�i�;
% perm�i�=perm�i+1�;
% perm�i+1�=x;
% flips=−flips;
% end
% end
% sP�k�= �flips	0�;
% end
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